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Task: Image-Caption Retrieval



Image-Caption Retrieval i

Task: Image-Caption Retrieval (ICR) is the task of retrieving images or captions
based on a query in the different modality.
Data: A set of N image-caption tuples/pairs, for each image xiI , we have k captions
xiCj, 1 ≤ j ≤ k.

D = {(xiI , xiC1, . . . , xiCk), . . . }Ni=1
• Flickr30k and MS-COCO are two common train and evaluation benchmarks.

Evaluation: Given a query image or caption, find the corresponding image or
caption in a set of 5000/1000 captions or images.
Evaluation metric: Recall@{1, 5, 10} and mAP.

1/39



Image-Caption Retrieval ii

To narrow down the scope of this project:
• We use simple ICR methods that:

• do not require a big compute infrastructure,
• or are optimized with a vast amount of training data.

• We use global matching methods:
• I.e. one global representation for the image and the caption.

• We use relatively small datasets [6, 9], compared to SOTA (Jia et al. [5], Yuan et al. [10])
(pre-trained) image-caption retrieval.
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Image-Caption Retrieval iii

Figure 1: Contrastive Image-Caption Retrieval framework. Source:
https://openai.com/blog/clip/.
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Image-Caption Retrieval - Notation i

1. Latent image representation Ii, computed by the Image Encoder.
2. Latent caption representation Ti, computed by the Caption Encoder.
3. s = sim(Ii, Ti), similarity score metric:

• sim =
Ii,Ti

∥Ii∥∥Ci∥
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Image-Caption Retrieval - Notation ii

Two main developments are accelerating progress in the ICR field:

• New methods for the encoder models.
• Transformer-based methods with more data (pre-training).

The standard training loss for ICR models, that are trained from scratch, is the Triplet
loss with semi hard-negatives (in batch negatives).
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Image-Caption Retrieval - Notation iii

• Given query q, the task is to rank all candidates in a candidate set
Ω = {vi | i = 0, . . . ,n}.

• A matching candidate is denote as v+.
• Negative candidate(s) as v−.
• v+ ∈ Pq (positive candidate set)
• v− ∈ Nq (negative candidate set)
• SqΩ = {si = ⟨ q

∥q∥
vi

∥vi∥
⟩, i = 0, . . . ,n}.
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Image-Caption Retrieval - Notation iv

Figure 2: The query q is an image I∗, v+ ∈ Pq in given in green, v− ∈ Nq in red
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Losses: Metric Learning Functions



Metric Learning functions i

• Metric learning focuses on loss functions that result in more accurate item
representations (in terms of a given evaluation metric).

• That can distinguish between similar and dissimilar items in a low-dimensional latent
space (Musgrave et al. [7]).

• There has been important progress in metric learning, that result in better
evaluation scores on a specific (evaluation) task.

• There has been barely any work that either tries different loss functions or designs
new loss functions for the ICR task.

• New loss functions might result in higher evaluation performances, without
requiring more data or larger models.
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Metric Learning functions ii

Research Question: Can newly introduced metric learning approaches, that is,
alternative loss functions, be used to increase the performance of ICR methods?
Why? More data, or more complex network architectures, should not be the only
remedy to improve the evaluation scores.
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Metric Learning functions iii

We compare three loss functions for the ICR task:

1. The Triplet loss (hinge loss), including semi-hard negative mining,
2. NT-Xent loss and
3. SmoothAP.

The goal is to test a small, but diverse set of loss functions.
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Triplet loss SH i

Loss: The Triplet loss with semi-hard negatives (in batch negatives) (Faghri et al. [4]).

LqTripletSH = max(α− s+ + s−,0),

LTripletSH =
∑
q∈B

LqTriplet.

• Intuition: Make the distance between s− and s+ bigger than α.
• Where α is a margin parameter,
• s− = max(SqN ),
• s+ = s0 ∈ SqP .
• Standard choice of optimization function for many ICR methods.
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Triplet loss i

Loss: The Triplet loss (N-Triplets).

LqTriplet =
∑

s−∈SqN

max(α− s+ + s−,0),

LTriplet =
∑
q∈B

LqTriplet.
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NT-Xent i

Loss: NT-Xent/InfoNCE (Chen et al. [2], Oord et al. [8]).

Intuition: The final loss/optimization is computed across all pairs in the batch,
using softmax normalization.

LNT-Xent = − 1
|B|

∑
q∈B

log
exp(s+/τ)∑
si∈Sq

Ω
exp(si/τ)

,
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SmoothAP i

• SmoothAP (Brown et al. [1]) is a smooth approximation of the Average Precision
Metric.

The Average Precision metric is defined as follows:

APq =
1

|SqP |

∑
i∈Sq

P

R(i,SqP)
R(i,SqΩ)

,

Where R(i,S) is a (non-differentiable) function that returns the ranking of candidate
i ∈ S in the candidate set:
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SmoothAP ii

• With some tricks (i.e. using a sigmoid function), R(i,S) can be reformulated into a
differentiable function.

• Intuition: Instead of solely optimizing the similarity between the positive and
negative candidates, this loss function tries to optimize a ranking directly.

APq ≈ 1
|SqP |

∑
i∈Sq

P

1 +
∑

j∈Sq
P ,j̸=i G(Dij; τ)

1 +
∑

j∈Sq
P ,j ̸=i G(Dij; τ) +

∑
j∈Sq

N
G(Dij; τ)

.

For the ICR task, we evaluate a ranking in the end. Why not optimize with a ranking
metric directly?
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Do Findings from Metric Learning
Extend to ICR?



Experimental setup i

• We take the VSE++ and VSRN as two ICR methods.
• VSE++: ConvNet (Image Encoder), single layer GRU (Caption Encoder).
• VSRN: Pre-computed feature map, Graph CNN and a GRU (Image Encoder), single layer

GRU (Caption Encoder).

• We only change the loss function, the rest remains the same.
• We evaluate which loss function results in the highest evaluation performance.

• The goal is to evaluate if promising loss functions from other metric learning tasks
improve the ICR evaluation scores

• We evaluate on the MS-COCO and Flickr30k benchmark datasets.
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Experimental setup ii

Figure 3: Contrastive Image-Caption Retrieval framework. Source:
https://openai.com/blog/clip/.
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Experiments Results i

Table 1: Evaluation scores for the Flickr30k, for the VSE++ and VSRN methods.

i2t t2i

Loss function # hyper
param R@1 R@5 R@10 average

recall mAP@5 R@1 R@5 R@10 average
recall rsum

Flickr30k

VSE++
Triplet loss 1.1 α = 0.2 30.8±.7 62.6±.3 74.1±.8 55.9±.3 0.41±.00 23.4±.3 52.8±.1 65.7±.3 47.3±.1 309.4±0.9
Triplet loss SH 1.2 α = 0.2 42.4±.5 71.2±.7 80.7±.7 64.8±.6 0.50±.01 30.0±.3 59.0±.2 70.4±.4 53.1±.2 353.8±1.6
NT-Xent 1.3 τ = 0.1 37.5±.6 68.4±.6 77.8±.5 61.2±.3 0.47±.00 27.0±.3 57.3±.3 69.1±.2 51.1±.2 337.1±1.3
SmoothAP 1.4 τ = 0.01 42.1±.8 70.8±.6 80.6±.8 64.5±.4 0.50±.00 29.1±.3 58.1±.1 69.7±.2 52.3±.2 350.4±1.7

VSRN
Triplet loss 1.5 α = 0.2 56.4±.7 83.6±.6 90.1±.2 76.7±.5 0.63±.01 43.1±.3 74.4±.3 83.1±.4 66.9±.3 430.7±1.8
Triplet loss SH 1.6 α = 0.2 68.3±1.3 89.6±.7 94.0±.5 84.0±.5 0.73±.01 51.2±.9 78.0±.6 85.6±.5 71.6±.6 466.6±3.3
NT-Xent 1.7 τ = 0.1 50.9 ±.5 78.9±.7 86.6±.4 72.2±.4 0.59±.00 40.6±.6 71.9±.2 81.7±.3 64.7±.2 410.6±1.5
SmoothAP 1.8 τ = 0.01 63.1±1.0 86.6±.8 92.4±.5 80.7±.7 0.69±.00 45.8±.2 73.7±.3 82.3±.2 67.3±.1 444.0±2.1
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Experiments Results ii

Table 2: Evaluation scores for the MS-COCO, for the VSE++ and VSRN methods.

i2t t2i

Loss function # hyper
param R@1 R@5 R@10 average

recall mAP@5 R@1 R@5 R@10 average
recall rsum

MS-COCO

VSE++
Triplet loss 2.1 α = 0.2 22.1±.5 48.2±.3 61.7±.3 44.0±.3 0.30±.00 15.4±.1 39.5±.1 53.2±.1 36.0±.1 240.0±0.9
Triplet loss SH 2.2 α = 0.2 32.5±.2 61.6±.3 73.8±.3 56.0±.2 0.41±.00 21.3±.1 48.1±.1 61.5±.0 43.6±.1 298.8±0.8
NT-Xent 2.3 τ = 0.1 25.8±.5 53.6±.5 66.1±.2 48.5±.3 0.34±.00 18.0±.1 43.0±.1 56.6±.2 39.2±.1 263.0±0.9
SmoothAP 2.4 τ = 0.01 30.8±.3 60.3±.2 73.6±.5 54.9±.3 0.40±.00 20.3±.2 46.5±.2 60.1±.2 42.3±.2 291.5±1.4

VSRN
Triplet loss 2.5 α = 0.2 42.9±.4 74.3±.3 84.9±.4 67.4±.3 0.52±.00 33.5±.1 65.1±.1 77.1±.2 58.6±.1 377.8±1.2
Triplet loss SH 2.6 α = 0.2 48.9±.6 78.1±.5 87.4±.2 71.4±.4 0.57±.01 37.8±.5 68.1±.5 78.9±.3 61.6±.4 399.0±2.3
NT-Xent 2.7 τ = 0.1 37.9±.4 69.2±.2 80.7±.3 62.6±.1 0.47±.00 29.5±.1 61.0±.2 74.0±.2 54.6±.1 352.3±0.5
SmoothAP 2.8 τ = 0.01 46.0±.6 76.1±.3 85.9±.3 69.4±.3 0.54±.00 33.8±.3 64.1±.1 76.0±.2 58.0±.2 382.0±1.1 19/39



Upshot i

1. The Triplet loss SH results in the best evaluation scores, regardless of dataset,
method or task.

2. The Triplet loss SH consistently outperforms the general Triplet loss.
3. The NT-Xent loss consistently underperforms compared to the Triplet loss SH. This

is in contrast with findings by Chen et al. [3].
4. Only for the VSE++ method on the i2t task, SmoothAP performs similar to the Triplet

loss SH.
5. SmoothAP does not outperform the Triplet loss SH. This is in contrast with the

findings by Brown et al. [1].
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A Method for Analyzing the
Behavior of Loss Functions



Counting Contributing Samples i

• The question is: Why do these loss function result in different results, even though
the training set-up is the same?

LqTripletSH = max(α− s+ + s−,0),

LTripletSH =
∑
q∈B

LqTriplet.

LqTriplet =
∑

s−∈SqN

max(α− s+ + s−,0),

LTriplet =
∑
q∈B

LqTriplet.
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Counting Contributing Samples ii

∂Lq
TripletSH
∂q =

{
v+ − v−, if s+ − s− < α

0, otherwise.
∂Lq

Triplet
∂q =

∑
v−∈Nq

1{s+ − s− < α} (v+ − v−) .

• Remember: s+ − s− = qv+ − qv−

• Apparently, the number of triplets (i.e. samples) is causing the difference in
evaluation score.

• Intuition: The number of triplets/samples should influence the final evaluation
scores.
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Counting Contributing Samples iii

Figure 4: Contrastive Image-Caption Retrieval framework. Source:
https://openai.com/blog/clip/.
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Counting Contributing Samples iv

CqTriplet =
∑

s−∈Sq
N

1{s+ − s− < α}

CBTripletSH =
∑

q∈B 1{s+ − s− < α},

1. By counting the number of candidates that contribute to the gradient w.r.t. q, we
aim to get a better understanding of why a certain loss function performs better
than others.

2. We propose counting contributing samples (COCOS).
3. We hypotheses that there is correlation between the evaluation score and the

number of triplets that contribute to the gradient.
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Counting Contributing Samples v

• We take the model checkpoint we also use for evaluation.
• We freeze all model parameters.
• We randomly iterate over the train set and count the values for CqTriplet and CBTripletSH

• We need to sample batches, to compute CqTriplet and CBTripletSH
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Counting Contributing Samples vi

Table 3: COCOS w.r.t. query q, for the Triplet loss and the Triplet loss SH.

i2t t2i

# Cq CB C0 Cq CB C0

Flickr30k
VSE++ Triplet loss 1.1 6.79±0.83 768.92±96.87 14.78±3.52 6.11±0.75 774.67±98.05 1.14±1.22

Triplet loss SH 1.2 1±0.0 98.74±4.83 29.23±4.81 1±0.0 98.22±4.66 29.75±4.62

VSRN Triplet loss 1.5 1.39±0.12 60.96±10.30 84.29±5.80 1.28±0.10 61.21±10.01 80.15±6.35
Triplet loss SH 1.6 1±0.0 45.59±5.93 82.39±5.92 1±0.0 44.98±5.70 82.99±5.70

MS-COCO
VSE++ Triplet loss 2.1 3.51±0.49 353.82±52.71 27.09±4.60 2.94±0.36 341.64±50.80 12.24±4.92

Triplet loss SH 2.2 1 ±0.0 88.17±5.25 39.82±5.24 1±0.0 87.24±5.34 40.75±5.33

VSRN Triplet loss 2.5 1.21±0.13 29.88±7.46 103.33±5.22 1.15±0.10 30.25±7.49 101.70±5.58
Triplet loss SH 2.6 1±0.0 33.24±5.39 94.73±5.45 1±0.0 32.90±5.35 95.08±5.4
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Counting Contributing Samples vii

Upshot: The Triplet loss takes way more negatives into account than the Triplet loss SH.
Hence, lower evaluation scores.

How to compute COCOS for the other loss functions?
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Counting Contributing Samples viii

LNT-Xent = − 1
|B|

∑
q∈B

log
exp(s+/τ)∑
si∈Sq

Ω
exp(si/τ)

,

∂Lq
NT-Xent
∂q =

(
1 − exp(s+/τ)

Z(q)

)
τ−1v+ −

∑
s−∈SqN

(
exp(s−/τ)

Z(q)

)
τ−1v−,
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Counting Contributing Samples ix

Cqv
−

NT−Xent =
∑

s−∈Sq
N

1{exp(s
−/τ)

Z(q) > ϵ} (6)

• Intuition: We count the number of negative candidates with a weight value bigger
than ϵ = 0.01.
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Counting Contributing Samples x

Table 4: COCOS w.r.t. query q, for the NT-Xent loss [3].

i2t t2i

# Cqv
−

NT−Xent Wqv−
NT−Xent Wqv+

NT−Xent Cqv
−

NT−Xent Wqv−
NT−Xent Wqv+

NT−Xent

Flickr30k VSE++ 1.3 9.88±0.51 0.42±0.02 0.56±0.02 9.65±0.51 0.42±0.02 0.56±0.02
VSRN 1.7 2.45±0.23 0.13±0.02 0.20±0.02 2.46±0.23 0.13±0.02 0.20±0.02

MS-COCO VSE++ 2.3 5.59±0.40 0.36±0.02 0.46±0.02 5.33±0.38 0.36±0.02 0.46±0.02
VSRN 2.7 1.10±0.14 0.10±0.02 0.14±0.02 1.11±0.14 0.09±0.02 0.14±0.02
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Counting Contributing Samples xi

Upshot: The NT-Xent loss takes also more than 1 negative into account. Hence, lower
evaluation scores.
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Counting Contributing Samples xii

CqSmooth =
1

|Sq
P |

∑
i∈Sq

P

(∑
j∈Sq

N
1

{
sim(Dij)
R(i,Sq

Ω)
2 > ϵ

}
+

∑
j∈Sq

P ,j ̸=i 1
{

sim(Dij)
R(i,Sq

Ω)
2 > ϵ

})
. (7)

• Intuition: We count the number of samples that are very close to each other in
terms of similarity score (i.e. which can change the ranking).
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Counting Contributing Samples xiii

Table 5: COCOS w.r.t. query q, for the SmoothAP [1] loss.

i2t t2i

# CqSmoothAP C0
SmoothAP CqSmoothAP C0

SmoothAP

Flickr30k VSE++ 1.4 1.27±0.06 2.15±1.51 1.47±0.83 636.72±18.72
VSRN 1.8 2.33±0.07 0.00±0.00 1.62±0.95 636.49±18.65

MS-COCO VSE++ 2.4 1.48±0.07 0.80±0.90 1.41±0.74 637.10±20.28
VSRN 2.8 1.67±0.07 0.14±0.37 1.42±0.76 637.23±20.35
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Counting Contributing Samples xiv

Upshot:

1. The gradient for (most) metric learning functions is just a sum over positive and
negative candidates.

2. The number of negative samples that is taken into account when computing the
gradient has an effect on the final evaluation score(s)

34/39



Discussion and Conclusions



Discussion i

• Limitation: Can we just use loss functions as an off-the-shelf tool, without any
additional hyper-parameter tuning?

• Musgrave er al. [7] also show that metric learning functions generalize quite badly to
different training settings.

• Limitation: Counting samples that contribute to the gradient based on a weight
value is quite non-trivial.

• Future research: Design loss functions using the principle using the COCOs
principles.

• Future research: The moment of counting during training also matters a lot.
• Future research: Extend the idea of COCOS to include more loss functions, or to

other domains (such as DPR).
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Conclusions i

1. We tried three different loss functions for the ICR task.
• The Triplet loss with semi hard-negatives still results in the highest evaluation

performances.
2. We introduce COCOS.

• Underlying idea: most metric learning functions, in the end, are a weighted sum of
positive and negative samples.

• Goal: An approach to analyze and unify metric learning functions.

3. We have shown that the best performing loss function only focuses on one (hard)
negative sample when computing the gradient.

4. This suggests that the underperforming loss functions take too many
(non-informative) negatives into account, and therefore converge to a sub-optimal
point.
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https://github.com/MauritsBleeker/
ecir-2022-reproducibility-bleeker
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Thanks for your attention!
Are there any questions?

{m.j.r.bleeker,m.derijke}@uva.nl
@MauritsBleeker

mauritsbleeker.github.io
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